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SUMMARY 
Numerical simulations have been carried out to study pulsatile laminar flows in a pipe with an axisymmetric ring- 
type constriction. Three types of pulsatile flows were investigated, namely a physiological flow, a pure sinusoidal 
flow and a non-zero mean velocity sinusoidal flow. The laminar flow governing equations were solved by the 
SIMPLE algorithm on a non-staggered grid and a modified Crank-Nicolson approximation was used to discretrize 
the momentum equations with respect to time. The maximum flow Reynolds number (Re) is 100. The Womersley 
number (N,) ranges from 0 to 50, with the corresponding Strouhal number (St) ranging from 0 to 3-98. The 
constriction opening ratio ( d D )  and thickness ratio (hlD) are fixed at 0.5 and 0.1 respectively. Within the time 
period investigated, all these pulsatile flows include both forward and backward flows. The unsteady recirculation 
region and the recirculation points change in size and location with time. For N ,  < 1 and St < 1. 56 x lo-' the three 
pulsatile flows have the same simple relation between the instantaneous flow rate and pressure loss (Ap) across the 
constriction and the pressure gradient in the axial direction (dpldz) in the fully developed flow region. The phase 
angles between the flow rate and pressure loss and the pressure gradient are equal to zero. With increasing N ,  and 
St, the phase angle between the flow rate and the dpldz becomes larger and has its maximum value of 90" at 
N ,  = 50 and St = 3.98. The three pulsatile flows also show different relations between the flow rate and the 
pressure gradient. The pure sinusoidal flow has the largest maximum pressure gradient and the non-zero mean 
velocity sinusoidal flow has the smallest. For larger N ,  and St the fully developed velocity profiles in the fully 
developed flow region have a smaller velocity gradient along the radial direction in the central region. The 
maximum recirculation length increases for N ,  ranging from 0 to 4.2, while this length becomes very small at 
N ,  = 50 and St = 3.98. The deceleration tends to enlarge the recirculation region and this effect appears for 
N ,  2 3 and St 2 1.43 x 1 O-*. Linear relations exist between the flow rate and the instantaneous maximum values 
of velocity, vorticity and shear stress. 
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1. INTRODUCTION 

In recent years unsteady laminar flows have attracted increasing attention in terms o f  both numerical 
studies and experimental investigations owing to their relevance in various engineering and biomedical 
applications. Unsteady flow has been of interest in the design of pulsatile flow meters.' The relation 
between the flow rate and pressure loss across the constriction can provide a formula for calculating the 
flow rate from the measured pressure loss. The principle of unsteady laminar flow is also applied to  
heat transfer devices, since heat transfer can be enhanced by the incipience of flow instability.2 In the 
study of intra-cardiac flow and blood vessel stenosis, the pressure loss, the maximum flow velocity, 
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shear stress and recirculation region are parameters of interest because of their relation with the 
atheroma caused by a large pressure drop across the constriction, the corpuscle damage due to large 
shear stress and the thrombus phenomena resulting from the recirculation r e g i ~ n . ~ - ~  

In 
biomedical studies, physiological laminar flows are adopted to investigate blood flow phenomena in 
which the flow Reynolds number is the order of 102.3*4 In vitro studies are often based on a 
sophisticated and expensive experimental set-up which can realistically simulate physiological flows.7 
In industrial applications such as heat exchangers, pure sinusoidal and non-zero mean velocity 
sinusoidal flows are used owing to their availability. An investigation is carried out here on both 
physiological and sinusoidal laminar flows. 

The flow in a pipe with a ring-type constriction can be used as a physical model in the study of blood 
vessel stenosis and intra-cardiac flow, unsteady flow meters and heat exchangers. The objectives of the 
present work are to investigate the effect of the Womersley number, which is a parameter related to the 
pulsating frequency, on pulsatile flows in a pipe with a ring-type constriction and to study the effects of 
flow acceleration and deceleration. The investigation is focused on the pressure loss in the flow passing 
through the constriction, the pressure gradient along the axial direction in the fully developed flow 
region, the maximum flow velocity, the maximum vorticity and shear stress, the recirculation length 
and the flow velocity profiles in the fully developed flow region. The present numerical procedure is 
applied to calculate the laminar flow in a sudden expansion pipe. The ring-type constriction has 
an opening of 0.5 and a thickness ratio of 0.1. The maximum flow Reynolds number is 100. The 
flow Womersley number ranges from 0 to 50, with the corresponding Strouhal number ranging from 
0 to 3.98. 

In the literature, physiological and sinusoidal flows have often been studied separately. 

2. GOVERNING EQUATIONS AND NUMERICAL PROCEDURE 

For the case of unsteady incompressible laminar flow the governing equations are the continuity 
equation and the Navier-Stokes equations. In an axisymmetric co-ordinate system these equations are 
given as follows: 

continuity equation 

a d 
dZ dr 
-(ru) +-(rv) = 0, 

z-direction momentum equation 

S t -+- (u2)+- - (mv)=- -+-  du d I d  dp d ( 2 d u )  -- +-- l d [ r ( d u  - -+- 31 , 
at dz r dr dz dz Redz r d r  Re dr 

r-direction momentum equation 

dv d I d  ap d 1 dv 1 d 2rdu 1 2v 
at az r dr dr & [ R e ( &  E] r d r ( R e d r )  Rer2 

In a general curvature co-ordinate system (5 ,  q), equations ( 1 H 3 )  can be expressed as 

St-+-((Uv) +--(&) = --+- - -+- +-- -- --- 

dG d a - + - ( E  - M )  + - ( F  - N )  - s = 0, 
at a< d? 

where 
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The variables (G, E, M, F, N, S, R) are functions of physical variables (u, v, p) and geometrical 
variables (z, r):'** 

G = StJr(0, u, v ) ~ ,  F = Jr( V ,  uV + Pq,, V V  + P v , ) ~ ,  E = Jr( U ,  uU + Pt,, vU + P t l ) T ,  

M = Jr(M1, M2, M3)T, N = Jr(N1, N2, N3)T, S = Jr(S1, S2, S3)T, 

p 1 2v s, = - - -- s1 = 0, s2 = 0, r Rev2 
The curvilinear velocity components U and V and the Cartesian velocity components u and v are 

related by U = ut,  + v& and V = usz + q,. The Jacobian J and the contravariant metric tensor 
components g", gI2, g" and g22 are given as 

2 
J = XtYq - XqYt, g" = t: + t;, gI2 = Gs, + tysy, g21 = g 1 2 ,  g22 = qf + 5.  

The time-dependent term G can be expressed as334 

G = --Jr(0,  1 N i  u, v)  T 271 Re 
and the Wormsley number is then considered as the characteristic non-dimensional parameter of 
unsteady flow. 

The non-linear equation (4) is solved by an iterative process in which all the physical variables 
(u, v, p) are updated as 

where n and n + 1 are the previous and current iteration numbers respectively and 4 represents each of 
the physical variables. By substituting equation (6) and equation (4), the governing equations can be 
expressed in incremental form as 

aaG a a 
at at as - + - (SE - SM) + - (SF - SN) - SS = -R. 

The residual vector R is calculated by using the values of the variable at level n as 

acn a a 
at at as R = - + - ( E  - M)" + - ( F  - N)" - S" 

For steady flow the Strouhal number St is zero. Hence the time-dependent terms can be deleted from 
the equations. Equations (7) are solved by the SIMPLE algorithm' on a non-staggered grid. All terms 
containing the incremental variables (SE, SM, SF,  SN, SS) are discretized by three-point difference 
schemes: hybrid difference schemes are used for convective terms, second-order central schemes for 
diffusive terms, the first-order forward schemes for pressure terms and backward schemes for the 
continuity equation. The residual vector is calculated by second-order difference schemes: second- 
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order upwind schemes are used for convective terms, central schemes for difisive terms, second-order 
forward schemes for pressure terms and second-order backward schemes for the continuity equation. 
At convergence the residual vector is equal to zero and the convergent results have second-order 
accuracy. For points adjacent to the wall the corresponding second-order difference schemes are also 
used to ensure the consistency of the scheme accuracy. 

A modified Crank-Nicolson scheme is used to discretize the time-dependent terms in the governing 
equations as 

where 
a d x = -(6E - 6 M )  + -(dF - 6 N )  - 6s at a? 

and 8 (= 0-1) is a scheme control parameter: 8 = 0 represents the time explicit scheme, 8 = 1 the time 
implicit scheme and 8 = 0.5 the standard Crank-Nicolson scheme. The optimum &value can be 
determined from numerical tests to obtain non-oscillatory results. In the present work 8 = 0.6 has been 
adopted after a series of numerical tests. 

Owing to the variation in the main flow direction in pulsatile flows, the discretizations of pressure 
gradient terms and the continuity equations are adjusted according to the instantaneous main flow 
direction. The differential terms along the axial direction are approximated by the first-order schemes 

64 . .  - 64. 

64. .-&#I.. 

+ O(A5) for forward flow, 

+ O(A5) for backward flow, 
(9) 

and the second-order schemes 

34i,J - 44i-Ij + 4 1 - 2 j  

2At 

-34ij + j - 4 i + 2 j  
2At 

+ O(AC2) for forward flow, 

+ O(At2) for backward flow. 
(10) 

1. 

2. 

3 .  

4. 

5 .  

The numerical procedure can then be briefly outlined as follows. 

At the start of the calculation all variables are set to zero. The fluid in the pipe is considered to be 
stationary. At each hrther time step the initial velocity and pressure fields are given by the 
convergent values of the previous time step and the boundary values of each variable are specified. 
The momentum equations are solved by sweeping in the positive and the negative r-direction with 
underrelaxation treatment. The underrelaxation factor is 0-35. The residual of each equation is 
calculated. Iteration is continued until the residuals of equations reduce to 0.5 of their values at the 
first iteration. 
The residual of the continuity equation is calculated and used as the source terms of the pressure 
correction equation, which is solved by AD1 sweeps. The sweep is repeated until the residual of the 
pressure correction equation reduces to 0.5 of its value at the first iteration. 
The flow flux at each section in the z-direction is calculated. The maximum equation residual and 
maximum flux difference from that at the inlet section are obtained. The programme will return to 
step 2 when the maximum residual or maximum flux difference is greater than 0.01. 
At convergence the streamline, vorticity and shear stress fields are calculated from the velocity 
field. Information about the pressure is obtained from the pressure field. 
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Figure 1. Flow in a pipe with a ring-type constriction: (a) geometrical definitions (Zb = %OD, Zc = 8 . 1 4  Zm = 20.0D, 
h = O.lD, d = 0.5D); (showing f of total grid points); (b) grid distribution along axial direction with more clusters at z = Z, 

3. BOUNDARY CONDITIONS 

In the solution domain shown in Figure l(a) the upstream inlet velocity conditions are described as 

u ( r , t )  = (n + 1)(2n + 1) ( 1 -- E)"" u( t ) ,  v(r , t )  = 0, 2n2 

where n = 6 in the present study. This power law rather than a parabolic profile is used, because the 
velocity profiles of pulsatile flow are generally not parabolic curves. The bulk inlet velocity u( t )  is 
specified according to the pulsatile flow as shown in Figure 2. 

(i) For the pure sinusoidal flow 

Unean = 0.14 
a 

. -  
0 . 0 0  0.25 0.50 0.75 1.00 

t/T 

Figure 2. Cross-sectional average velocities of three pulsatile flows: physiological flow (-), sinusoidal flow (---) and non-zero 
mean flow sinusoidal flow (-.-.-.-) 
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(ii) For the non-zero mean velocity sinusoidal flow 

with u,,,, = 0.14 the same value as in the physiological flow. 
For the physiological flow G ( t )  is adopted from Reference 10. (iii) 

At each time step, along the solid wall a no-slip velocity condition is used, i.e. u = 0, v = 0. Along 
the central line axisymmetric conditions are applied for all variables, i.e. 
duldr = 0, v = 0, dp ldr  = 0. At the downstream exit section the pressure is fixed to zero and the 
flow is considered to be fully developed, i.e. p = 0, duldz = 0, &/dz = 0. 

4. GRID STRETCHING FUNCTION 

In the grid point arrangement within the solution domain a stretching function is used along the axial 
direction as 

with the boundary conditions 

ZI&O = 0, zlC=I = z m ,  

where z, is the maximum length of the solution domain in the axial direction and a and y are two grid 
control parameters. At point 5 = the grid size is Az = zmaAS, which can be controlled by the value 
of a. If a < 1, the grid will become more clustered at point 5 = t l .  The grid distribution for the whole 
z-region can be further controlled by the parameter y. After integrating equation (12) and incorporating 
the boundary conditions, the stretching function can be expressed as 

where 

1 - a  
2 2  P =  

In the present study the grid points are more concentrated near the constriction. The parameter 5 ,  
is calculated using the above equation and the constriction location as shown in Figure ](a). The 
parameter y is set to 0-2 according to a grid adjustment test and a is determined from Az = Ar 
in the region near the constriction, i.e. a = Ar/z,At. This stretching fhnction is illustrated in 
Figure l(b). 

5 .  RESULTS AND DISCUSSION 

The numerical procedure was first tested on the steady laminar flow in a sudden expansion pipe with a 
grid of dimensions 21 X 61 in the r- and z-directions respectively. The present results are compared 
with the data of Polland" and Napolitano and CinnellaI2 for the recirculation length and wall shear 
stress in Figure 3. 
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(b) the wall shear stress distribution. 

Figure 3. Comparison of results on steady flow in a pipe with a sudden expansion: (a) recirculation length; (b) wall shear stress 
distribution 

In the pulsatile flow simulations the fluid in the pipe is considered to be stationary at the start of the 
calculation (tlT = 0). In order to verify the effect of the initial starting flow condition, the sinusoidal 
flow in a straight pipe is calculated. As shown in Figure 4, this effect is negligible. 

In the calculation of the flow in a pipe with a ring-type constriction the grid points are equally 
distributed in the radial and time directions. However, in the axial z-direction the grid points 
are unequally distributed, with more points concentrated near the constriction as shown in 
Figure l(b). Grid points totalling 15, 21 and 31 in the r-direction and 81, 101 and 121 in the 
z-direction are tested under the steady flow conditions. Totals of 31, 41 and 61 grid points in the 
time direction are tested for the first three time steps to obtain the grid-point-independent 
numerical results. Further calculations are then based on an arrangement of 21, 121 and 65 grid 
points in the r-, z- and t-directions respectively. 

5.1. The physiological jlow fields 

In the case of N ,  = 1 and St = 1-59 X the physiological flow field development with time is 
presented in Figure 5 .  With tlT increasing from 0 to 10165, the forward flow is accelerated to its peak 
flow velocity. The recirculation length (zJD) increases from zero to a maximum value of 2-74. As tlT 
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( c ) .  Velocity profiles at outlet section 

Figure 4. Test on effect of initial starting condition on laminar sinusoidal flow in a straight pipe: (a) pressure difference between 
inlet and outlet sections; (b) maximum vorticity and shear stress; (c) velocity profiles at downstream outlet section 

varies from 10165 to 20165, the forward flow is decelerated to zero average flow velocity and ZJD 
decreases to zero correspondingly. In the period from tlT = 20165 to 40165 the main flow is moving 
backwards. The upstream inlet becomes the downstream outlet and the recirculation region appears on 
the left side of the constriction. The backward flow has its maximum value of U ( t )  = -0 .22 at t/T = 
26/65. The recirculation regions are smaller than those of the forward flow because of the lower flow 
velocity. In the time period from tlT = 40165 to 1 the flow velocity is very low, with 161 < 0 . 06. The 
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(a) streamlines (upper half) and vortlcHy contourn ( lower halo. 

. . . , . . .. . .. . 

I 

(b) shear stress contoun ( upper half ) and isobar ( lower half ). 

Figure 5.  Physiological flow development in a pipe with a ring-type constriction with d/D = 0.5 and h/D = 0.1 in the case of 
Re = 100, N ,  = 1 and S? = 1.59 X (a) streamlines (upper half) and vorticity contours (lower half); (b) shear stress 
contours (upper half) and isobars (lower half) 
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flow fields predicted are similar to those of previous time steps, but with much smaller recirculation 
regions. 

Considering the two cases of (IT = 20165 and 40165, the average velocities are nearly equal to zero, 
corresponding to instantaneous flow Reynolds numbers of 2 and - 1 respectively. However, their 
streamlines and other characteristics contours are quite different. At t/T = 20165 a large vorticity exists 
in the region on the right side of the constriction. The vorticity cannot diffuse completely within this 
small time increment, resulting in asymmetric characteristic contours to the constriction. At tlT = 

40165 all characteristic contours are nearly symmetrical to the constriction. The instantaneous flow 
field is nearly a Stokes flow field owing to its very low instantaneous Reynolds number. 

Figure 5 shows that there is no constant recirculation region in the physiological flow. The 
recirculation point moves forwards and backwards with time. In physiological circulation this property 
is helpful to prevent thrombus phenomena in blood vessels. 

5.2. Effect of Womersley number 

The three types of pulsatile flow are calculated for the Womersley number in the range 0-50, which 
corresponds to the Strouhal number ranging from 0 to 3.98. The effects of N ,  on the flow properties 
are presented below. 

5.2.1. Relation betweenflow rate (Q) and pressure loss (Ap). The effect of the Womersley number 
on the relation between the instantaneous flow rate Q and the pressure loss Ap is presented in Figure 6. 
At N ,  = 1 the three pulsatile flows have the same relation as at N ,  = 0, namely 

which is plotted as the solid curve in Figure 6. The three pulsatile flows have the same maxi- 
mum pressure loss at the instant of maximum flow rate. The maximum nondimensional pressure 
loss is equal to 10-2. This relation is satisfied for all cases of N ,  d 5 and St d 3.98 x as 
shown in Figures 6(a)-6(c). However, no simple relation between the flow rate and the pressure 
loss can be found for higher Womersley numbers, i.e. N ,  2 10 and St30.16, as shown in 
Figure 6(d). 

5.2.2. Relation between flow rate (Q) and pressure gradient (dp/dz). At small Womersley 
number the instantaneous flow rate Q is linearly related to the instantaneous pressure gradient 
(dpldz) along the axial-direction in the fully developed flow region at zlD = 16, as shown in 
Figure 7(a). The phase angle qpp-Q, between the flow rate and the pressure gradient is zero. The 
pulsatile flow can then be treated as a quasi-steady flow. At N ,  = 1 the three pulsatile flows have 
the same relation 

Q / d z  = -0.484Q. (16) 

With increasing Womersley and Strouhal numbers, their relations become elliptic curves, as 
shown in Figures 7(b)-7(f). The phase angle qp-e has its maximum value of 90" at N ,  = 50 
and St = 3.98. In Figure 7 there are two values of dpldz corresponding to the same flow rate 
value at some points for Q > 0, because the calculation was carried for slightly more than 
one complete cycle. The difference between these two values is not small at the first time step 
where Q = 0.12. This implies that slightly more than one complete cycle should be calculated 
in the pulsatile flow simulation. The relations can be expressed as below, where dpldz' = 

(dpldz) cos 8 - Q sin 8, Q' = (dp/dz) sin 8 + Q cos 8 and 8 is the angle between the Q-axis and 
the elliptic longitudinal axis. 
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Figure 6. Relation between flow rate and pressure loss for various Womersley numbers 

In the case of N, = 2, st = 0.637 x lo-', 8 = -33", 'pp-Q = 10" and the fitted solid curve as 
shown in Figure 7(b), 

(0071) dpldz' + (6) = 1 for pure sinusoidal flow 

and 

dp/& Q' -0 .136  
(m)2+ ( o .  85 )'= 1 for non-zero mean velocity sinusoidal flow. (18) 
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In the case of N ,  = 3, St = 1-43 X 

Figure 7(c), 
0 = -23", vPQ = 30" and the fitted solid curve shown in 

( m) d P l U  + (A) 2 =  1 for pure sinusoidal flow 

and 

d P l U  Q'-0 .13  (-) + ( o ,  85 ) 2 =  1 for non-zero mean velocity sinusoidal flow. (20) 

In the case of N ,  = 5, St = 3.98 X 
Figure 7(d), 

0 = - 15", qPQ = 60" and the fitted solid curve shown in 

(-) dPlU + (A) = 1 for pure sinusoidal flow 

and 

2 Q' -0 .13  
= 1 for non-zero mean velocity sinusoidal flow. (23) dPlU (-)*+( 0.85 ) 
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In the case of N, = 10, St = 0.160, 8 = - lo", (pp-Q = 80" and the fitted solid curve shown in Figure 
7(e), 

(19) dP/& + (A) 2 =  1 for pure sinusoidal flow 

and 

(24) 
(11) d P / &  + (A) *= 1 for non-zero mean velocity sinusoidal flow. 

In the case of N, = 50, St = 3.98, 8 = o", (ppQ= 90" and the fitted solid curve shown in 
Figure 7(Q, 

( y) + (A) = 1 for pure sinusoidal flow 

and 

(g) + ( Qo,,",'l ') 2 =  1 for non-zero mean velocity sinusoidal flow. (26) 

The phase angle (pp-Q is increased to its maximum value of 90". The maximum pressure gradient 
appears at the instant of maximum flow acceleration or deceleration, while the instantaneous flow rate 
is equal to zero. 

The effect of the Womersley number on the Qdpldz relation becomes important with an increase its 
value. For small N,-values such as N, < 1 and St < 1.6 X lop3 the time-dependent terms St 
a(u,  v)/& are very small and their effect can be neglected. The pulsatile flows can then be treated as 
quasi-steady flows. The three pulsatile flows have the same maximum pressure loss. At larger N,- and 
St-values such as N, > 2 the time-dependent terms become significant for the pressure gradient and 
differences among the three types of pulsatile flow results appear. The non-zero mean velocity 
sinusoidal flow has the smallest pressure gradient. The pure sinusoidal flow has roughly the same 
pressure loss as the physiological flow for larger instantaneous flow rates (Q > 0.2). 

5.2.3. Velocity profiles. The Womersley number has a large effect on the pulsatile flow velocity 
profiles in the fully developed flow region at zlD = 16, as shown in Figure 8 for the sinusoidal flow 
results. At N ,  = 0 or 1 and St = 0 or 1 -6 X lop3 the velocity profiles are parabolic. The axial velocity 
is zero at the instant of zero flow rate, as shown in Figure 8(a) and 8(b). However, for large N,- and St- 
values the velocity profiles are no longer parabolic. The velocity gradient along the radial direction 
becomes small in the central region and large in the region adjacent to the boundary. The axial velocity 
is not zero at the instant of zero flow rate. At N, = 50 and St = 3.98 the fluid motion is limited to a 
small region about D/10 from the pipe wall in the complete cycle. 

5.2.4. Recirculation length. The sinusoidal flow results are used to investigate the effect of the 
Womersley number on the recirculation length, as shown in Table I, where (ZJD),,,~,, and ( Z J D ) ~ ~ ~ , ~  
are the maximum recirculation lengths in the acceleration and deceleration periods respectively. 

During the acceleration period the maximum recirculation length ( z , , D ) ~ ~ ~ ,  has its largest value at 
about N ,  = 3. It becomes zero at N ,  = 50. However, in the deceleration period the maximum 
recirculation length (ZJD),, ,~~,~, has its largest value at about N, = 5. For N, > 3 the flow deceleration 
causes a larger recirculation region in the pulsatile flow. 
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Figure 8. Effect of Womersley and Strouhal numbers on velocity profiles 

Table I. Maximum recirculation lengths at various Nw-values 

Nw = 0 1 2 3 5 10 30 50 

(ZIIDImax. I 2.74 2.95 3.10 3.10 2.89 1.36 0.21 0.00 
(~IID)max,2 2.74 2.95 3.10 3.18 4.20 2.92 0.74 0.20 

5.2.5. Other parameters of the laminar pulsatileflows. Linear relations exist between the flow rate 
and the non-dimensional maximum values of flow velocity, vorticity and shear stress as given by 

Umax = 7*4Q(t)7 166*45Q(t) tmax = -1*06Q(t) (27) 

and illustrated in Figure 9 for the case of N ,  = 10 and St = 0.160. From these expressions the overall 
maximum values can be calculated from the flow rate. The wall maximum vorticity and shear stress are 
about 0.2 of their overall maximum values according to the numerical calculations. In some biofluid 
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Figure 9. Relations between flow rates and various flow fields parameters: (a) maximum flow velocity; (b) maximum vorticity; 
(c) maximum shear stress 

dynamic investigations, e.g. intracardiac flow and valvular regurgitant flow studies, the velocity 
information can be obtained from the Doppler echocardiography te~hnique. '~  From the velocity value 
the maximum shear stress, flow discharge and pressure loss can be estimated through numerical study 
as in the present work. 

5.3. The effect of acceleration and deceleration 

As can be seen in Figure 7, acceleration and decelaration have a significant effect on the relation 
between the flow rate and the pressure gradient for 1 < N ,  < 10 and 1.6 X < St < 0.16. 
Acceleration results in a large pressure drop, so more energy is required to transport a unit volume of 
fluid during acceleration. Their effects on the flow fields are further presented in Figure 10 based on 
the results of pure sinusoidal flow at N, = 5.  At time steps t/T = 4/65 and 16/65 the average velocities 
are about 0.55 and the acceleration and decelaration have the same value. Figures 10(a) and 10(b) 
show the differences in the recirculation region, vorticity contours and shear stress contours. 
Deceleration leads to larger recirculation regions. 
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Figure 10. Effect of flow acceleration and deceleration on sinusoidal flow fields in the case of N ,  = 5 and St = 4 X lo-*: (a) 
streamlines (upper half) and vorticity contourn (lower half); (b) shear stress contours (upper half) and isobars (lower half) 

6. CONCLUSIONS 

Three types of pulsatile laminar flows in a pipe with a ring-type constriction have been studied. The 
effect of the Womersley and Strouhal numbers on the flow fields has been investigated in the ranges 
0-50 and 0-3.98 respectively. From the numerical results the following conclusions can be drawn. 

1. 

2. 

3. 

4. 

5 .  

6. 

D 
d 

The recirculation region and the recirculation points in the pulsatile flows change in size and 
location with time owing to the variation in instantaneous flow velocity superimposed on the 
main flow field. There is no constant flow stationary point in the pulsatile flows, 
A quadratic relation was found between the instantaneous flow rate and the pressure loss across 
the constriction for N ,  < 10 and Sf < 0.160. 
With increasing N,- and Sf-values, the phase angle between the flow rate and the pressure 
gradient changes from 0" to 90". Their relation changes from a linear curve to an elliptic curve 
for the sinusoidal flows. The maximum pressure gradient over the whole time period becomes 
larger. The velocity gradient in the radial direction decreases from that of parabolic values to zero 
in the central region of the pipe. The maximum recirculation region has its peak value at about 
N ,  = 5 and St = 3.98 X lop3. 
For the N,- and Sr-values considered, linear relations exist between the flow rate and the 
maximum values of velocity, vorticity and shear stress. 
Flow deceleration tends to enlarge the recirculation region and its effect becomes more 
significant with increasing Womersley and Strouhal numbers, while flow acceleration tends to 
increase the pressure drop in the pipe flow. 
With respect to the pressure loss, pressure gradient, overall maximum flow velocity, maximum 
shear stress and vorticity, the pure sinusoidal flow gives a good approximation to the 
physiological flow. Hence in biofluid dynamics studies, in vitro experiments can be performed 
using a mechanical sinusoidal flow (with small backward flow) to simulate physiological flow 
problems. 

pipe diameter 
orifice diameter 

APPENDIX: NOMENCLATURE 

non-dimensionalized by 
L 
L 
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pressure gradient in axial direction 
constriction thickness 
Womersley number, N ,  = D , / ( o / v )  
pressure 
pressure loss in flow passing constriction 
flow rate, Q = Q(t) = (n14)D2U(t) 
non-dimensional maximum flow rate, n14 
Reynolds number, Re = UpeokD/v 
radial co-ordinate, radial distance 
Strouhal number, St = D/UpeakT or (1/2n)/Nw2/Re 
time period of physiological flow 
time period of physiological flow 
time co-ordinate, time step 
axial velocity component 
instantaneous bulk velocity in pipe 
peak U( t)-value 
radial velocity component 
axial co-ordinate, axial distance 
recirculation length 
underrelaxation factor in updating pressure 
fluid density 
co-ordinate variables in general curvature co-ordinates 
fluid molecular kinetic viscosity 
non-dimensional shear stress, T = (l/RE)(du/dr + av /az )  
non-dimensional vorticity, SZ = du/ar - av/raz 
phase angle between flow rate and pressure loss 

L 

PU2 
PU2 
UL2 

L 

L 
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